Analytical enumeration of Hamiltonian walks on a fractal

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys. A: Math. Gen. 22 L19
(http://iopscience.iop.org/0305-4470/22/1/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:42

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Analytical enumeration of Hamiltonian walks on a fractal

R M Bradley
Department of Physics, Colorado State University, Fort Collins, CO 80523, USA

Received 4 October 1988

Abstract

The connectivity constant ω for Hamiltonian walks on Dhar's 4 -simplex is found using an exact set of recursion relations. The result $\omega=1.399710 \ldots$ differs from the value of ω for Hamiltonian walks on the square lattice. As a consequence, ω must depend on other lattice characteristics besides the coordination number and the fractal dimension. The first correction to the leading-order asymptotic behaviour is also obtained.

Hamiltonian walks are self-avoiding walks (SAw) which visit every site in a lattice, and are often used as a model of collapsed polymer chains in the zero-temperature limit (see, for example, [1]). The enumeration of these walks is also important in the theory of the glass transition of polymer melts [2]. The number of Hamiltonian walks on a finite subset of the lattice with N points, C_{N}, grows as ω^{N} for large N. More precisely,

$$
\lim _{N \rightarrow \infty} \frac{\ln C_{N}}{N}
$$

exists and is defined to be $\ln \omega$. The constant $\ln \omega$ is the configurational entropy per monomer of a collapsed single chain at $T=0$. The value ω is called the connectivity constant.

The connectivity constant is known exactly for a small number of lattices. Some time ago, Kasteleyn [3] found ω for the Manhattan lattice, while Malakis [4] used this result to compute the connectivity constant for Hamiltonian walks on coverings of the Manhattan lattice. More recently, Suzuki [5] determined the value of ω for the hexagonal and 3-12 lattices. Finally, Bradley [6] found that $\omega=12^{1 / 9}$ for Hamiltonian walks on the Sierpinski gasket. Since the Sierpinski gasket is frequently employed as a simple model of the infinite cluster at the percolation threshold in two dimensions [7], this result is relevant to the theory of collapsed polymer chains in random media.

Dhar's 4 -simplex [8] is a regular fractal with Hausdorff dimension $D=2$. The critical exponents of the self-avoiding walk on this lattice have been computed analytically [9]. In addition, Dhar and Vannimenus [10] recently established that a selfattracting linear polymer on the 4 -simplex has a collapse transition at finite temperature and determined the critical exponents at the theta point exactly. In this letter, I show that the zero-temperature entropy in the collapsed phase can be computed for polymer chains on the 4 -simplex using a set of exact recursion relations. The result $\omega=$ $1.399710 \ldots$ which I obtain extends the short list of lattices where the connectivity constant for Hamiltonian walks has been computed analytically \dagger. I also show that
\dagger Parenthetically, it is trivial to see that $\omega=1$ for the 3 -simplex.
the leading-order correction to the asymptotic behaviour of C_{N} has the same form as was recently obtained for Hamiltonian walks on the even-even Manhattan lattice with free boundaries [11] \dagger.

Let C_{l} be the number of closed Hamiltonian walks on the 4 -simplex of order l (see figure 1). Each of these walks visits each site once and ultimately returns to its starting point. To compute C_{l}, we let $C_{1, t}$ be the number of Hamiltonian walks which start at one corner of the l th 4 -simplex and end at another. A Hamiltonian walk of this kind will be represented schematically as shown in figure 2. Figure 3 illustrates how each closed Hamiltonian walk on the $(l+1)$ th 4 -simplex can be decomposed into Hamiltonian walks which enter and exit 4 -simplices of order l. As a result

$$
\begin{equation*}
C_{l+1}=3 C_{1, l}^{4} \quad \text { for } l \geqslant 1 . \tag{1}
\end{equation*}
$$

To obtain a closed set of recursion relations, walks of a different type must also be considered. The corners of the l th 4 -simplex are all equivalent by symmetry, and we arbitrarily label them by the numbers 1 to 4 . Consider a saw which enters at corner 1 , exits at corner 2 , re-enters at corner 3 and exits once more at corner 4. The total

Figure 1. Dhar's 4 -simplices of order $l=1,2$ and 3.

Figure 2. Schematic representation of a Hamiltonian walk which enters and exits the $/$ th 4 -simplex at different corners.

Figure 3. Decomposition of a closed Hamiltonian walk on the ($l+1$)th 4 -simplex into Hamiltonian walks which enter and exit 4-simplices of order l. The three possible decompositions are shown in $(a),(b)$ and (c).
number of such walks which visit each site on the l th 4 -simplex once will be denoted by $C_{2,1}$. It is straightforward but tedious to show that

$$
\begin{align*}
& C_{1, l+1}=2 C_{1, l}^{4}+4 C_{1, l}^{3} C_{2, l}+6 C_{1, l}^{2} C_{2, l}^{2} \tag{2}\\
& C_{2, l+1}=C_{1, l}^{4}+4 C_{1, l}^{3} C_{2, l}+22 C_{2, l}^{4} \tag{3}
\end{align*}
$$

for all $l \geqslant 1$. Equations (2) and (3) are the exact recursion relations for the problem. They are similar in form to the recursion relations for the generating functions for saw on the 4 -simplex [9,10], but do not contain terms involving non-Hamiltonian walks. The initial values are

$$
\begin{equation*}
C_{1,1}=2 \quad C_{2,1}=1 \tag{4}
\end{equation*}
$$

To obtain the connectivity constant, we first let

$$
x_{l} \equiv \frac{C_{1, l}}{C_{2, i}}
$$

and

$$
y_{l} \equiv \frac{\ln C_{2, l}}{4^{l}}-\frac{\ln 22}{3}\left(\frac{1}{4}-\frac{1}{4^{\prime}}\right)
$$

for all $l \geqslant 1$. We also define $\tilde{\omega}$ by

$$
\begin{equation*}
\ln \tilde{\omega} \equiv \lim _{l \rightarrow \infty} \frac{\ln C_{2, l}}{N_{l}} \tag{5}
\end{equation*}
$$

where $N_{l}=4^{l}$ is the number of sites in the l th 4 -simplex. Clearly,

$$
\begin{equation*}
\lim _{l \rightarrow \infty} y_{l}=\ln \tilde{\omega}-\frac{\ln 22}{12} . \tag{6}
\end{equation*}
$$

Equations (2) and (3) yield recursion relations for x and y valid for all $l \geqslant 1$:

$$
\begin{align*}
& x_{l+1}=\frac{2 x_{l}^{4}+4 x_{l}^{3}+6 x_{l}^{2}}{x_{l}^{4}+4 x_{l}^{3}+22} \tag{7}\\
& y_{l+1}=y_{l}+\frac{1}{4^{1+1}} \ln \left(1+\frac{2}{11} x_{l}^{3}+\frac{1}{22} x_{l}^{4}\right) . \tag{8}
\end{align*}
$$

The initial values are $x_{1}=2$ and $y_{1}=0$. Numerically iterating x and y, we find that x_{1} tends to zero as $l \rightarrow \infty$, while y_{l} quickly asymptotes to $0.078678 \ldots$. (The second term was included in the definition of y_{l} to speed convergence.) Equation (6) now gives

$$
\begin{equation*}
\tilde{\omega}=1.399710 \ldots \tag{9}
\end{equation*}
$$

It remains to demonstrate that $\tilde{\omega}$ is equal to the connectivity constant ω. Equation (1) shows that C_{l} and $C_{1, l}$ have the same leading-order asymptotic behaviour, so

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \frac{\ln C_{\mathrm{t}, l}}{N_{l}}=\ln \omega . \tag{10}
\end{equation*}
$$

Using (2), we obtain

$$
\frac{\ln C_{1, l+1}}{4^{l+1}}=\frac{1}{2}\left(\frac{\ln C_{1, l}}{4^{l}}+\frac{\ln C_{2, l}}{4^{l}}\right)+\frac{\ln 6}{4^{l+1}}+\frac{1}{4^{l+1}} \ln \left(1+\frac{2}{3} x_{l}+\frac{1}{3} x_{l}^{2}\right) .
$$

Taking the $l \rightarrow \infty$ limit of this expression and employing (5) and (10), we have the desired result $\omega=\tilde{\omega}$. We conclude that

$$
\begin{equation*}
\omega=1.399710 \ldots \tag{11}
\end{equation*}
$$

It may at first glance seem surprising that $\omega=\tilde{\omega}$, even though the ratio $x_{t} \equiv C_{1, t} / C_{2, l}$ tends to zero. The reason x_{l} goes to zero is that $C_{1, l}$ and $C_{2, l}$ have the same leading-order asymptotic behaviour but have different correction terms. Indeed, as l grows large, x_{l} tends to zero and (7) may be replaced by

$$
\begin{equation*}
x_{l+1} \simeq \frac{3}{11} x_{l}^{2} \tag{12}
\end{equation*}
$$

Equation (12) shows that

$$
\begin{equation*}
C_{1, l} / C_{2, l}=x_{l} \sim \lambda^{2^{\prime}} \quad \text { as } l \rightarrow \infty \tag{13}
\end{equation*}
$$

where λ is a positive constant smaller than 1 . The constant λ can be computed by letting

$$
\begin{equation*}
z_{l}=\frac{\ln x_{l}}{2^{l}}-\ln \left(\frac{3}{11}\right)\left(\frac{1}{2}-\frac{1}{2^{l}}\right) \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
\lim _{i \rightarrow \infty} z_{l}=\ln \lambda-\frac{1}{2} \ln \left(\frac{3}{11}\right) \tag{15}
\end{equation*}
$$

As before, the second term in (14) has been added to $\ln x_{l} / 2^{l}$ to increase the rate of convergence. From (7) we have

$$
\begin{equation*}
z_{l+1}=z_{l}+\frac{1}{2^{l+1}} \ln \left(\frac{1+\frac{2}{3} x_{l}+\frac{1}{3} x_{l}^{2}}{1+\frac{2}{11} x_{l}^{3}+\frac{1}{22} x_{l}^{4}}\right) \tag{16}
\end{equation*}
$$

for $l \geqslant 1$. The initial value of z is $z_{1}=(\ln 2) / 2$. Iterating x and z using (7) and (16), we find that z_{l} converges to $0.471256 \ldots$ as $l \rightarrow \infty$. Equation (15) then gives

$$
\lambda=0.836620 \ldots
$$

Having determined λ, we are in a position to find the leading-order correction to the asymptotic behaviour of C_{l}. First note that, from (8), we have

$$
\begin{equation*}
y_{l}=\sum_{k=1}^{l-1}\left(y_{k+1}-y_{k}\right)+y_{1}=\sum_{k=1}^{l-1} \frac{1}{4^{k+1}} \ln \left(1+\frac{2}{11} x_{k}^{3}+\frac{1}{22} x_{k}^{4}\right) . \tag{17}
\end{equation*}
$$

Taking the $l \rightarrow \infty$ limit in (17) and using (6), we obtain

$$
\ln \omega-\frac{\ln 22}{12}=\sum_{k=1}^{\infty} \frac{1}{4^{k+1}} \ln \left(1+\frac{2}{11} x_{k}^{3}+\frac{1}{22} x_{k}^{4}\right) .
$$

We now apply this and the definition of y_{l} to (17) to get

$$
\begin{equation*}
\frac{\ln C_{2, l}}{4^{l}}=\ln \omega-\frac{\ln 22}{3} \frac{1}{4^{l}}-\sum_{k=1}^{\infty} \frac{1}{4^{k+1}} \ln \left(1+\frac{2}{11} x_{k}^{3}+\frac{1}{22} x_{k}^{4}\right) \tag{18}
\end{equation*}
$$

A simple inductive argument shows that $x_{l} \leqslant 2$ for all l, so

$$
\sum_{k=1}^{\infty} \frac{1}{4^{k+1}} \ln \left(1+\frac{2}{11} x_{k}^{3}+\frac{1}{22} x_{k}^{4}\right) \leqslant \ln \left(\frac{35}{11}\right) \sum_{k=1}^{\infty} \frac{1}{4^{k+1}}=\frac{1}{3} \ln \left(\frac{35}{11}\right) \frac{1}{4^{i}} .
$$

Equation (18) then gives

$$
\begin{equation*}
\ln C_{2, l}=(\ln \omega) N_{l}+\mathrm{O}(1) \tag{19}
\end{equation*}
$$

for large l. Combining (13) and (19), we have

$$
\ln C_{1, l} \sim(\ln \omega) N_{l}+(\ln \lambda) N_{l}^{1 / 2} .
$$

We now have the desired result:

$$
\ln C_{l} \sim(\ln \omega) N_{l}+(2 \ln \lambda) N_{l}^{1 / 2} \quad \text { for } l \gg 1
$$

which shows that the leading-order correction to the asymptotic behaviour of $\ln C_{l}$ is proportional to the simplex perimeter. Recently, the leading-order correction term in $\ln C_{N}$ for Hamiltonian walks on the even-even Manhattan lattice with free boundaries has also been shown to be proportional to the perimeter [11].

It is interesting to compare our result (11) to the predictions of the various mean-field theories of Hamiltonian circuits which have been proposed [2-4]. These theories give estimates of ω that depend only on the coordination number of the lattice, z. For a lattice with $z=4$, a Flory-Huggins type of theory [13] yields $\omega_{F H}=3 / \mathrm{e} \simeq 1.1036$, Huggins [14] predicts that $\omega_{\mathrm{H}}=1.5$, and Orland et al [12] give the value $\omega_{0}=4 / \mathrm{e} \simeq$ 1.4715. None of these values is a good approximation to the value of ω for the 4 -simplex.

The 4 -simplex, square lattice and Sierpinski gasket all have coordination number $z=4$, but each has a different connectivity constant [6] \dagger. Thus, ω cannot depend on z alone, contrary to the prediction of the mean-field theories. In fact, since the square lattice and 4 -simplex both have coordination number $z=4$ and fractal dimension $D=2$, the connectivity constant must depend on other lattice characteristics besides z and D. Clearly, the universality of ω is quite low.

I would like to thank P N Strenski and J-M Debierre for valuable discussions. This work was supported by an IBM Faculty Development Award.

[^0]
References

[1] Pechold W R and Grossman H P 1979 Faraday Disc. 6858
[2] Gordon M, Kapadia P and Malakis A 1976 J. Phys. A: Math. Gen. 9751
[3] Kasteleyn P W 1963 Physica 291329
[4] Malakis A 1976 Physica 84A 256
[5] Suzuki J 1988 J. Phys. Soc. Japan 57687
[6] Bradley R M 1986 J. Physique 479
[7] Gefen Y, Aharony A, Mandelbrot B B and Kirkpatrick S 1981 Phys. Rev. Lett. 471771
[8] Dhar D 1977 J. Math. Phys. 18577
[9] Dhar D 1978 J. Math. Phys. 195
[10] Dhar D and Vannimenus J 1987 J. Phys. A: Math. Gen, 20199
[11] Duplantier B and David F 1988 J. Stat. Phys. to appear
[12] Orland H, Itzykson C and de Dominicis C 1985 J. Physique Lett. 46 L353
[13] Mears P 1965 Polymers: Structure and Bulk Properties (New York: Van Nostrand)
[14] Huggins M L 1942 Ann. NY Acad. Sci. 41
[15] Schmalz T G, Hite G E and Klein D J 1984 J. Phys. A: Math. Gen. 17445

[^0]: \dagger Schmalz et al [15] obtained $\omega \sim 1.472$ for the square lattice. B Derrida (unpublished) found that ω lies between 1.4725 and 1.4730 .

