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Abstract. The connectivity constant w for Hamiltonian walks on Dhar’s 4-simplex is found 
using an exact set of recursion relations. The result w = 1.399 710. .  . differs from the value 
of w for Hamiltonian walks on the square lattice. As a consequence, w must depend on 
other lattice characteristics besides the coordination number and the fractal dimension. 
The first correction to the leading-order asymptotic behaviour is also obtained. 

Hamiltonian walks are self-avoiding walks (SAW) which visit every site in a lattice, 
and are often used as a model of collapsed polymer chains in the zero-temperature 
limit (see, for example, [ l ] ) .  The enumeration of these walks is also important in the 
theory of the glass transition of polymer melts [2]. The number of Hamiltonian walks 
on a finite subset of the lattice with N points, C N ,  grows as w for large N. More 
precisely, 

In CN 
lim ___ 
N-oo N 

exists and is defined to be In w. The constant In w is the configurational entropy per 
monomer of a collapsed single chain at T = 0. The value w is called the connectivity 
constant. 

The connectivity constant is known exactly for a small number of lattices. Some 
time ago, Kasteleyn [3] found w for the Manhattan lattice, while Malakis [4] used 
this result to compute the connectivity constant for Hamiltonian walks on coverings 
of the Manhattan lattice. More recently, Suzuki [5] determined the value of w for the 
hexagonal and 3-12 lattices. Finally, Bradley [6] found that w = 121’9 for Hamiltonian 
walks on the Sierpinski gasket. Since the Sierpinski gasket is frequently employed as 
a simple model of the infinite cluster at the percolation threshold in two dimensions 
[7], this result is relevant to the theory of collapsed polymer chains in random media. 

Dhar’s 4-simplex [8] is a regular fractal with Hausdorff dimension D = 2. The 
critical exponents of the self-avoiding walk on this lattice have been computed analyti- 
cally [9]. In addition, Dhar and Vannimenus [lo] recently established that a self- 
attracting linear polymer on the 4-simplex has a collapse transition at finite temperature 
and determined the critical exponents at the theta point exactly. In this letter, I show 
that the zero-temperature entropy in the collapsed phase can be computed for polymer 
chains on the 4-simplex using a set of exact recursion relations. The result w = 
1.399 710 . . . which I obtain extends the short list of lattices where the connectivity 
constant for Hamiltonian walks has been computed analytically?. I also show that 

t Parenthetically, it is trivial to see that w = 1 for the 3-simplex. 

0305-4470/89/010019+06$02.50 @ 1989 IOP Publishing Ltd L19 



L20 Letter to the Editor 

the leading-order correction to the asymptotic behaviour of CN has the same form as 
was recently obtained for Hamiltonian walks on the even-even Manhattan lattice with 
free boundaries [ 1 l]?. 

Let C, be the number of closed Hamiltonian walks on the 4-simplex of order I (see 
figure 1). Each of these walks visits each site once and ultimately returns to its starting 
point. To compute C,, we let C,,, be the number of Hamiltonian walks which start at 
one corner of the Ith 4-simplex and end at another. A Hamiltonian walk of this kind 
will be represented schematically as shown in figure 2 .  Figure 3 illustrates how each 
closed Hamiltonian walk on the ( l + l ) t h  4-simplex can be decomposed into Hamil- 
tonian walks which enter and exit 4-simplices of order 1. As a result 

c/+, = 3C;'J for I2 1. (1) 

To obtain a closed set of recursion relations, walks of a different type must also be 
considered. The corners of the Ith 4-simplex are all equivalent by symmetry, and we 
arbitrarily label them by the numbers 1 to 4. Consider a SAW which enters at corner 
1, exits at corner 2 ,  re-enters at corner 3 and exits once more at corner 4. The total 

1 = 2  1.3 
w 

1 = 1  

Figure 1. Dhar's 4-simplices of order 1 = 1, 2 and 3 

Figure 2. Schematic representation of a Hamiltonian walk which enters and exits the Ith 
4-simplex at different corners. 

t This was conjectured earlier in [4]. 
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Figure 3. Decomposition of a closed Hamiltonian walk on the ( I +  1)th 4-simplex into 
Hamiltonian walks which enter and exit 4-simplices of order I. The three possible decompo- 
sitions are shown in ( a ) ,  ( b )  and (c). 

number of such walks which visit each site on the lth 4-simplex once will be denoted 
by C2,'. It is straightforward but tedious to show that 

Ci,i+i = ~ C ~ , I + ~ C : , I C ~ , I + ~ C : , I C : , I  (2) 

c2,1+, = c ~ , ' + 4 ~ : , I c 2 , I + 2 2 c ~ , '  (3) 

for all 12 1. Equations (2) and (3) are the exact recursion relations for the problem. 
They are similar in form to the recursion relations for the generating functions for 
SAW on the 4-simplex [9,10], but do not contain terms involving non-Hamiltonian 
walks. The initial values are 

CI,l = 2 c2J = 1. (4) 

To obtain the connectivity constant, we first let 

and 

In C,, In22 1 1 
y1=--- --- 4' 3 (4 4') 

for all I2 1 .  We also define 6 by 

In C?,' In 6 = lim - 
Ni 

where NI = 4' is the number of sites in the Ith 4-simplex. Clearly, 

In 22 
limy, =In 6 --. 
'+CO 12 

Equations (2) and (3) yield recursion relations for x and y valid for all 12 1: 

2x;'+ 4x: + 6x7 
xf + 4x: + 22 x1+1= 

1 
yl,, = y ,  + 4'+1 - In( 1 +Ax; + &:). 
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The initial values are x ,  = 2 and y ,  = 0. Numerically iterating x and y ,  we find that x I  
tends to zero as 1 + 00, while y ,  quickly asymptotes to 0.078 678 . . . . (The second term 
was included in the definition of yl to speed convergence.) Equation (6) now gives 

(9) 

It remains to demonstrate that 0 is equal to the connectivity constant W .  Equation 

0 = 1.399 710.. . . 

(1) shows that C, and Cl , ,  have the same leading-order asymptotic behaviour, so 

- In w. 
In c, 1 lim - - 

NI 

Using (2), we obtain 

In Cl , ,+ ,  1 In Cl,! In C, ,  I n 6  1 + -+ - In( 1 + $ X I  + f x : ) .  - 
4 1 + 1  41 +7) 4 4/+l 4 f + 1  

Taking the 1+00 limit of this expression and employing (5) and (lo), we have the 
desired result w = 0. We conclude that 

w = 1.399 710.. . . (11) 

It may at first glance seem surprising that w = 0, even though the ratio x, = Cl , / /  C2,/ 
tends to zero. The reason x f  goes to zero is that Cl,, and C2,/ have the same leading-order 
asymptotic behaviour but have different correction terms. Indeed, as 1 grows large, x1 
tends to zero and (7) may be replaced by 

x/+1 = A x : .  (12) 

Equation (12) shows that 

c1,flc2,1=x1-~21 as /+a (13) 

where A is a positive constant smaller than 1. The constant h can be computed by letting 

so 

lim zI =In A -4 In(+). 
1-m 

As before, the second term in (14) has been added to In x,/2' to increase the rate of 
convergence. From (7) we have 

) ( 1 1 1  2 2 1  

1 + <xl + ix: 
z1+1= ZI +- 2f+1  In 1 +ZX3 + - l x 4  

for IS 1. The initial value of z is z1 =(In 2)/2. Iterating x and z using (7 )  and (16), 
we find that zI converges to 0.471 256. . . as 1 + 00. Equation (15) then gives 

A = 0.836 620. . . . 
Having determined A, we are in a position to find the leading-order correction to 

the asymptotic behaviour of CI.  First note that, from (8), we have 
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Taking the I + CO limit in (17) and using (6), we obtain 

We now apply this and the definition of yl  to (17) to get 

A simple inductive argument shows that x , 6 2  for all 1, so 

Equation (18) then gives 

In C2,,=(1n w)N,+O(l)  

for large 1. Combining (13) and (19), we have 

In c ~ , ~  - (In w ) ~ ,  + (In A ) N ~ ” .  

We now have the desired result: 

which shows that the leading-order correction to the asymptotic behaviour of In C, is 
proportional to the simplex perimeter. Recently, the leading-order correction term in 
In CN for Hamiltonian walks on the even-even Manhattan lattice with free boundaries 
has also been shown to be proportional to the perimeter [ 111. 

It is interesting to compare our result (1 1) to the predictions of the various mean-field 
theories of Hamiltonian circuits which have been proposed [2-41. These theories give 
estimates of w that depend only on the coordination number of the lattice, z. For a 
lattice with z = 4, a Flory-Huggins type of theory [ 131 yields oFH = 3/e = 1.1036, 
Huggins [ 141 predicts that wH = 1.5, and Orland er al [ 121 give the value wo = 4/e = 
1.471 5 .  None of these values is a good approximation to the value of w for the 4-simplex. 

The 4-simplex, square lattice and Sierpinski gasket all have coordination number 
z = 4, but each has a different connectivity constant [6]t. Thus, w cannot depend on 
z alone, contrary to the prediction of the mean-field theories. In fact, since the square 
lattice and 4-simplex both have coordination number z = 4 and fractal dimension D = 2, 
the connectivity constant must depend on other lattice characteristics besides z and 
D. Clearly, the universality of o is quite low. 

I would like to thank P N Strenski and J-M Debierre for valuable discussions. This 
work was supported by an IBM Faculty Development Award. 

t Schmalz er a1 [ 151 obtained w - 1.472 for the square lattice. B Derrida (unpublished) found that w lies 
between 1.4725 and 1.4730. 
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